Rice University logo
Top blue bar image

Plasmon Coupling in 1-D Assemblies of Nanostructures

Building new plasmonic devices from the bottom up using nanoparticles as elementary building blocks requires a detailed understanding of how properties of the individual nanoparticles change as they are assembled into higher order structures. Energy exchange due to plasmon coupling between nanoparticles depends strongly on the relative distance of the nanoparticles. Additional complexity is introduced when nanoparticles are prepared and assembled by chemical synthesis and soft lithography methods because irregularities or ‘defects’ in particle size, shape, and ordering are inherently present in those systems. However, chemical preparation strategies have the advantage of producing highly crystalline nanoparticles with interparticle separations that are only limited by the thickness of the organic capping material. In order to elucidate the role of imperfections in functional nanomaterials consisting of many particles, it is therefore necessary to correlate structure with the collective optical response on nano to micrometer length scales and compare it to individual nanoparticles.

Our goal is to understand plasmon coupling between metallic nanoparticles in one-dimensional assemblies produced by chemical methods in the presence of structural irregularities. To address these issues, we are using single particle spectroscopy techniques (absorption and scattering) that can be correlated with scanning and transmission electron microscopy (TEM and SEM) to determine the optical properties for specific nanoparticle arrangements. By combining complementary spectroscopy techniques that probe both radiative and nonradiative plasmonic properties together with structural characterization tools and theoretical modeling, we hope to obtain microscopic insight into how defects in nanoparticle chains influence the collective plasmon modes.

The figure above shows polarization dependent dark-field scattering images of a ring of 40 nm gold nanoparticles for different detected polarizations as indicated by the arrows (top). SEM of the same nanoparticle ring (bottom left) allows for correlated structural and optical characterization. The dark-field scattering spectra (bottom right) reveal coupled plasmon modes that are polarized parallel to the ring circumference and red-shifted with respect to the 40 nm nanoparticles making up the ring. The assembly of the gold nanoparticles into ring superstructures was developed by our collaborators in the Zubarev Lab.


  1. A. Paul, Y -R. Zhen, Y. Wang, W. -S. Chang, Y. Xia, P. Nordlander,and S. Link Dye-Assisted Gain of Strongly Confined Surface Plason Polaritons in Silver Nanowires Nano Lett. 14, 3628 (2014) link
  2. S. Nauert, A. Paul, Y.-R. Zhen, D. Solis, L. Vigderman, W.-S. Chang, E. R. Zubarev, P. Nordlander, and S. Link,
    Influence of Cross Sectional Geometry on Surface Plasmon Polariton Propagation in Gold Nanowires.
    ACS Nano 8, 572 (2014) link
  3. D. Solis , A. Paul , J. Olson , L. S. Slaughter , P. Swanglap , W.-S. Chang , and S. Link, Turning the Corner: Efficient Energy Transfer in Bent Plasmonic Nanoparticle Chain Waveguides. Nano Lett. 13, 4779 (2013) link
  4. W. Ma, H. Kuang, L. Wang, L. Xu, W.-S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu,S. Link, N. A. Kotov, Chiral plasmonics of self-assembled nanorod dimers. Scientific Reports 3, 1934, (2013) link
  5. B. Willingham, S. Link, A Kirchhoff solution to plasmon hybridization. Appl. Phys. B 13, 4, 519 (2013) link
  6. J. Olson, P. Swanglap, W.-S. Chang, S. Khatua, D. Solis, S. Link, Detailed mechanism for the orthogonal polarization switching of gold nanorod plasmons. Phys. Chem. Chem. Phys. 15, 419 (2013) link
  7. S. Slaughter, B. A. Willingham, W.-S. Chang, M. H. Chester, N. Ogden, S. Link, Toward Plasmonic Polymers. Nano Lett. 12, 3967 (2012). link
  8. A. Paul, D. Solis, Jr., K. Bao, W.-S. Chang, S. Nauert, L. Vidgerman, E. R. Zubarev, P. Nordlander, S. Link, Identification of Higher Order Long Range Surface Plasmon Polariton Modes in Chemically Prepared Gold Nanowires. ACS Nano 6, 8105 (2012). link
  9. D. Solis, Jr., B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, W.-S. Chang, S. Link, Electromagnetic Energy Transport in Nanoparticle Chains via Dark Plasmon Modes. Nano Lett. 12, 1349 (2012). link
  10. W.-S. Chang, B. Willingham, L. S. Slaughter, S. Dominguez-Medina, P. Swanglap, S. Link, Radiative and Nonradiative Properties of Single Plasmonic Nanoparticles and Their Assemblies. Acc. Chem. Res. 45, 1936 (2012). link
  11. W.-S. Chang, B. Willingham, L. S. Slaughter, B. P. Khanal, E. R. L. Vigderman, E. R Zubarev, S. Link, Low absorption losses of strongly coupled surface plasmons in nanoparticle assemblies. Proc. Natl. Acad. Sci. USA 108, 19879 (2011). link
  12. L. S. Slaughter, W.-S. Chang, S. Link, Characterizing Plasmons in Nanoparticles and Their Assemblies with Single Particle Spectroscopy. J. Phys. Chem. Lett. 2, 2015 (2011).link
  13. B. P. Swanglap, L. S. Slaughter, W.-S. Chang, B. Willingham, B. P. Khanal, E. R. Zubarev, S. Link, Seeing double: Coupling between substrate image charges and collective plasmon modes in self-assembled nanoparticle superstructures. ACS Nano 5, 4892 (2011). link
  14. B. Willingham, S. Link, Energy Transport in Metal Nanoparticle Chains via Sub-Radiant Plasmon Modes. Opt. Express. 19, 6450 (2011). link
  15. D. Solis Jr., W.-S. Chang, B. P. Khanal, K. Bao, P. Nordlander, E. Zubraev, S. Link, Bleach-Imaged Plasmon Propagation (BlIPP) in Single Gold Nanowires. Nano Lett. 10, 3482 (2010). link
  16. L. S. Slaughter, Y. Wu, B. Willingham, P. Nordlander, S. Link, Effects of Symmetry Breaking and Conductive Overlap on the Plasmon Coupling in Gold Nanorod Dimers. ACS Nano 4, 4657 (2010). link
  17. W.-S. Chang, L. S. Slaughter, B. P. Khanal, P. Manna, E. R. Zubarev, S. Link, One-Dimensional Coupling of Gold Nanoparticle Plasmons in Self-Assembled Ring Superstructures. Nano Lett. 9, 1152 (2009). link